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Abstract

The space of 2 × 2 games is four-dimensional and has a complex
but understandable structure. In this paper, we describe and discuss
two ways of assigning coordinates to 2× 2 games. The u-v system is
simpler; it is efficient, effective, and is always continuous. The x-b sys-
tem is more readily understandable, more presentable, and eliminates
redundancies present in the u-v system. Using x-b coordinates, we
explore the space of 2× 2 games through two-dimensional slices, and
develop an understanding of how the parts of this space are connected.
Finally, we use an interactive computer program to move through the
space, allowing us to observe the intricacies of the space’s structure.

1 Introduction

Game theory is a study of the behavior of logical actors. More specifically,
it supposes that the decisions made by one individual can affect other in-
dividuals’ results. There is no assumption of competition nor cooperation:
we assume that each player seeks only to maximize their own return, and is
not concerned with returns of other players. We call these systems of deci-
sions and returns games. Understanding these games and the relationships
between them provides insight into how people behave, how people should
behave, and how changing people’s incentives might affect their behavior.
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In this paper, we will explore the space of 2× 2 games. In Section 2, the
concept of a game is introduced, and both types of equilibria are discussed:
pure equilibria and mixed equilibria. In Section 3, we represent games as
simple, intuitive diagrams. In Section 4, we establish a method of assigning
coordinates to any game; this expands the work done by Roberts and Gun-
derson [2]. In Section 5, we build a new system of coordinates which is more
easily interpreted, and eliminates redundancies present in the previous sys-
tem; this system is analogous to a discrete categorization of games presented
by Robinson and Goforth [1], and Bruns [4], but here it is made continuous.
In Section 6, we discuss how our new coordinates are valuable using a key
figure. In Section 7, an interactive version of that figure is described.

2 Games and Equilibria

In a 2×2 game, two players simultaneously choose between two options. Each
player then receives a return, which depends on both the choice they made
and the choice made by the other player. Thus, there are four possibilities:

• each player chooses their first option,

• each player chooses their second option,

• the first player chooses their first option and the second player chooses
their second option,

• or the first player chooses their second option and the second player
chooses their first option.

Each player might receive a different return in each of these cases, so any
game involves exactly eight return values. These values are typically given
in two 2 × 2 payoff matrices : one per player. One player chooses between
the rows, and the other chooses between the columns. We call these players
the row player and the column player respectively. It is important to note
that each player knows the contents of both players’ matrices; we will always
assume that this is the case.

Suppose the row player has a payoff matrix R and the column player has
a payoff matrix C given by

R =

(
6 0
2 1

)
and C =

(
4 6
6 3

)
. (1)

2



If the row player chooses the first row and the column player chooses the
second column, then the row player receives a return of 0, and the column
player receives a return of 6.

2.1 Pure Equilibria

A pure strategy is one in which a player will always choose the same option.
This greatly clarifies the other player’s best choice if they want to optimize
their returns. Suppose the row player knows that the column player is choos-
ing the first column, so they choose the row with the greatest entry in that
column to maximize their return. If neither player can change their choice to
receive a greater return, then the choices being made are a pure equilibrium.

Pure equilibria are common, existing in 7/8 of games, as we will see later,
though none exist in Game (1). In Game (2), given by

R =

(
6 0
0 6

)
and C =

(
6 0
0 6

)
, (2)

there are two pure equilibria: each player can choose their first option, or
each player can choose their second option.

2.2 Mixed Equilibria

A mixed strategy is one in which a player makes one choice with some prob-
ability p and the other with probability 1 − p. If both players are playing
mixed strategies and neither player can change their strategy to increase
their average (or expected) return, then those strategies are a mixed equilib-
rium. Games typically have either zero or one mixed equilibria, but some
edge cases have infinitely many; Game (2) is an example of such a game.
Mixed equilibria exist in only 1/4 of games.

We will denote a mixed equilibrium (p, q), where p is the probability that
the row player chooses the first row and q is the probability that the column
player chooses the first column. Suppose a mixed equilibrium exists for some
game. When players play at that equilibrium, a player’s expected return
given that they choose their first option equals the expected return given
that they choose their second option. If the row and column players have
payoff matrices given by

R =

(
a b
c d

)
and C =

(
ā b̄
c̄ d̄

)
,
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then
q · a+ (1− q) · b = q · c+ (1− q) · d

and
p · ā+ (1− p) · c̄ = p · b̄+ (1− p) · d̄.

This must be true because there cannot be a strategy that the column player,
for example, can switch to which would increase their expected return. Using
this fact and simple algebra, we get the following theorem.

Theorem 1. Suppose a 2 × 2 game has a mixed equilibrium (p, q) and is
given by the row and column players’ payoff matrices

R =

(
a b
c d

)
and C =

(
ā b̄
c̄ d̄

)
.

Then p =
d̄− c̄

ā− b̄− c̄+ d̄
and q =

d− b

a− b− c+ d
.

Furthermore, the expected returns of the row and column players are given
by

ER =
ad− bc

a− b− c+ d
and EC =

ād̄− b̄c̄

ā− b̄− c̄+ d̄

respectively, assuming that players are playing at the mixed equilibrium.

Observe that each player’s expected return depends on that player’s payoff
matrix, as might be expected, but players’ strategies depend only on the other
player’s matrix.

3 Game Diagrams

Payoff matrices can be hard to interpret at a glance, and we are going to see
a lot of games, so we want to devise a more comprehensible way to illustrate
a game. Figure 1 is such an illustration. For payoff matrices

R =

(
a b
c d

)
and C =

(
ā b̄
c̄ d̄

)
,

belonging to the row and column players, we consider the points (a, ā), (b, b̄),
(c, c̄), and (d, d̄). We connect two of these points by a cerulean line if they are
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Figure 1: The diagram for the game given by the payoff matrices

R =

(
0 6
5 0

)
and C =

(
2 6
1 0

)
. The horizontal coordinate is the row player’s

return and the vertical coordinate is the column player’s return.

taken from the same row, and connect two points by a gold line if they are
taken from the same column. We draw points for any pure equilibria at the
corresponding vertices of the quadrilateral. These points are colored based on
the following criteria: if each player gets the best return in their matrix, the
equilibrium is light green; if only the row player gets the best return in their
matrix, the point is gold; if only the column player gets their best return, the
point is cerulean; and if neither player gets their best return, the equilibrium
is black. For a mixed equilibrium, we draw a gray point at (ra, rb), where ra
is the expected return for the row player and rb is the expected return for
the column player when playing at the mixed equilibrium.

The row player wants to “move” to the right, but can only move along the
gold lines (by switching to the other row). The column player can “move”
along the cerulean lines by switching to the other column, and wants to move
upward. We associate each player with the color of line they can move along:
this is why the pure equilibria are sometimes colored gold or cerulean.

4 A Global Coordinate System

While a game has eight variables, we can eliminate two degrees of freedom per
matrix without meaningfully changing the game. Multiplying either matrix
by a positive scalar or adding a scalar to either matrix does not affect the
way the game is played; it only affects the players’ returns. We normalize
matrices to have a minimum entry of zero and a maximum entry of six; we
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are ignoring the case where all entries are equal. This leaves us with four
remaining variables. This four-dimensional space is topologically equivalent
to the product of two spheres: one sphere per matrix. Figure 2 shows the
positions of the most degenerate matrices on one of these spheres. This sphere
is best characterized as a cube, as we care about the triangular regions shown
in Figure 2.

Each sphere has 24 triangular regions whose vertices correspond to ma-
trices containing only zeroes and sixes. Two points in the same triangle
correspond to matrices whose entries are ordered in the same way: the great-
est entry is in the same position, the second greatest entry is in the same
position, et cetera. As there are 4! = 24 ways to order 4 entries, any nonde-
generate matrix corresponds to a point in exactly one region. Note that the
rectangles in top and bottom portions of Figure 2 are the triangles on the
top and bottom sides of the cube, but have been stretched to fill the space.
Every point with a v-coordinate of 2 maps to the same matrix, and the same
is true for points with v-coordinate −2.

Definition. For a game given by

R =

(
a b
c d

)
and C =

(
ā b̄
c̄ d̄

)
,

we define the coordinates v1 and u1 as follows:

v1 =
a

6
− b

6
+

c

6
− d

6
(3)

u1 =



−
(
a

6
− b

6
− c

6
+

d

6

)
− 3

if (a = 6 or b = 6)

and (c = 0 or d = 0)

−
(
a

6
+

b

6
− c

6
− d

6

)
− 1

if (b = 6 or c = 6)

and (a = 0 or d = 0)

a

6
− b

6
− c

6
+

d

6
+ 1

if (a = 0 or b = 0)

and (c = 6 or d = 6)

a

6
+

b

6
− c

6
− d

6
+ 3

if (b = 0 or c = 0)

and (a = 6 or d = 6)

. (4)
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We define v2 and u2 by applying precisely the same formulae to the transpose
of the column player’s matrix. So v2 is given by

v2 =
ā

6
− c̄

6
+

b̄

6
− d̄

6
. (5)

Equation (3) gives the latitude of the row player’s matrix, which we call
v1, and ranges from −2 to 2 as we imagine the cube to have a side length
of 2. Equation (4) gives the longitude of the row player’s matrix, which we
call u1, and ranges from −4 to 4. Expressing u1 is a more difficult task as
the expression depends on which side of the cube a point is on. The latitude
of the column player’s matrix is called v2, given by Equation (5), and the
longitude is u2.

When we move diagonally along one side of the cube, only one entry in
our matrix changes, and when we move orthogonally across the side of a
cube, two entries change together. When we move along or beside a red line
shown in Figure 2, the second-greatest entry changes; when we move beside
a blue line, the third-greatest entry changes; and when we move beside a
green line, the second- and third-greatest entries both change. Furthermore,
when we cross a red line, the two smallest entries are equal; when we cross a
blue line, the two greatest entries are equal; and when we cross a green line,
the second- and third-greatest entries are equal, and we pass to another side
of the cube.

5 Another Coordinate System

We have established the u1-v1-u2-v2 coordinate system (the global coordinate
system) as a meaningful way to describe a game. However, it is difficult
to interpret the meanings of each coordinate or say anything substantive
about a game after looking only at its global coordinates. Because the space
is four-dimensional, we struggle to produce valuable visualizations for the
entire set. Additionally, although any two functionally identical matrices
will receive the same u-v coordinates, two functionally identical games might
have different u1-v1-u2-v2 coordinates. Switching the rows of one player’s
matrix meaningfully alters the game, but switching the rows or columns of
both players’ matrices does not. Thus, for any nondegenerate game, there
are three other games which are exactly the same in practice, despite having
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Figure 2: The vertical coordinate v is given by (3) and the horizontal coor-
dinate u is given by (4), modified by stretching the triangles on the top and
bottom of the picture. For all of the gray matrices, we assume a < b < c < d.

different coordinates. Note that all four of these games would produce the
same diagram. Recall that each sphere is broken into 24 regions. Those
regions become 242 = 576 regions when both spheres are involved, but this
fourfold redundancy reduces that number to 242/4 = 144 distinct regions.

We define b1 as the difference between the two greatest entries of the row
player’s payoff matrix. In Figure 3, the points corresponding to games such
that b1 = 2 are colored blue. Observe that there are four distinct triangles
(one of the sides has been distorted on each). Switching the rows or columns
of a matrix from one triangle will result in a matrix from another triangle.
In this way, we can treat the triangles as one and the same. To illustrate
this, consider the matrices

A1 =

(
0 6
4 3

)
, A2 =

(
4 3
0 6

)
, A3 =

(
6 0
3 4

)
and, A4 =

(
3 4
6 0

)
. (6)

The points which these four matrices map to are shown in Figure 3.
We define x1 as the distance traveled around a triangle, ranging from zero

at the start, to six when a full lap has been completed. We let x1 = 0 = 6
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Figure 3: Each point on a solid blue line maps to a matrix whose two greatest
entries differ by 2. The four blue points map to the matrices in Equation (6).

at the most extreme point of a triangle (the highest point if the triangle is
in the top or the lowest point if the triangle is in the bottom), and we let x1

increase as we move along a triangle in a clockwise direction. We define b2
and x2 for the other player in the same fashion.

Thus, we have a new coordinate system (a local coordinate system), but
for any coordinates (x1, b1, x2, b2), each player’s matrix could be any of four
possibilities, giving 16 possible combinations. However, for any one of those
possibilities, three of the other possibilities are functionally identical, so there
are only four distinct games associated with given coordinates (x1, b1, x2, b2).
If we fix b1 and b2, we get four different products of two triangles, which pass
through each of the 6·6·4 = 144 regions of the four-dimensional space exactly
once. These four products are depicted in Figure 4, which is discussed in the
next section.

6 A More Insightful Geography

To create Figure 4, we suppose b1 and b2 both equal 2. Red lines are drawn
where a triangle crosses a red line on its cube, and green lines are drawn where
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Figure 4: Gives examples of all 144 classes of games. These represents the 4
tori produced by supposing b1 = b2 = 2.
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a triangle crosses a green line. As previously described, when a game lies on
a red boundary, the two smallest entries in one player’s matrix are equal, and
when a game lies on a green boundary, a player’s second- and third-greatest
entries are equal. So degenerate games lie on these lines, and games on the
intersections of these lines are doubly degenerate. These boundaries separate
the 144 regions, and the diagram of a game from each region is shown in the
appropriate cell.

Each quadrant allows for wrapping, which is to say that the top and
bottom rows are adjacent and the left and right columns are adjacent. Some
regions are adjacent, but not obviously so. When either b1 or b2 is zero, the
triangles in Figure 3 overlap and there are regions containing identical games;
two regions whose games become identical in this way are adjacent, sharing
a blue boundary. The arrows along the sides of each quadrant indicate that
each region in that row or column shares a blue boundary with a region in
the quadrant the arrow points to; the region in question is in nearly the
same position within its quadrant, only flipped over the nearest red line.
The arrows come in three classes—horizontal, vertical, and diagonal—and
the positions of the arrows in each of these classes are consistent between
quadrants. Observe that a region on the edge of a quadrant shares a blue
boundary with the region directly across from it on the opposite quadrant.

When b1 or b2 is zero, each game is identical to a game in another quad-
rant. When both b1 and b2 are zero, crossing either blue boundary takes us to
an identical game, and crossing both boundaries takes us to a fourth identical
game. Typically, these four games appear in four different quadrants, but
in the case where the blue boundaries are shared with the same quadrant,
crossing both of them takes us back to the quadrant where we began. In
this way, when b1 and b2 are zero, certain regions within each quadrant are
identical. There is yet more complexity: in the case where a game is on a
green boundary and a blue boundary of the same player, the two closest red
lines are equidistant, so an identical game can be reached by flipping over
either red line and moving into the appropriate quadrant. Thus, it may be
that a game appears exactly three times within our space. This becomes
apparent when we look at Figure 3; when the triangles overlap, the matrices
on green lines are in three different triangles simultaneously. If a game is
on two blue boundaries and two green boundaries (so both players’ matrices
have three sixes), then that game appears nine times within our space.

The quadrants are characterized by the positions of the greatest entries in
players’ matrices; with our normalizations, these entries are sixes. In the top-
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right quadrant, two sixes are in the same position, meaning players prefer
the same scenario. We call this the good quadrant. In the bottom-right
quadrant, there is a six in the column player’s matrix which lies in the same
row (but not in the same column) as a six in the row player’s matrix. This
is desirable for the column player, because the row player is likely to favor
the row containing the column player’s six. We call this the column player’s
quadrant. In the top-left quadrant, there is a six in the column player’s
matrix which lies in the same column (but not in the same row) as a six in
the row player’s matrix. This is desirable for the row player, because the
column player is likely to favor the column containing the row player’s six.
We call this the row player’s quadrant. Finally, in the bottom-left quadrant,
there is a six in the column player’s matrix which lies on the same diagonal
as a six in the row player’s matrix; in other words, these sixes are in neither
the same row nor the same column. We call this the bad quadrant.

Notice that the descriptions of the games within each quadrant are not
mutually exclusive if a matrix has multiple sixes. A player’s matrix has
multiple sixes if and only if that player’s b equals 0. This aligns with the
behavior of the blue boundaries as described previously.

Games in the regions colored light green have pure equilibria at which
both players get their best returns. (These equilibria are colored green). We
call the 27 cells colored only light green “the good ell”. We color cells where
games have gold equilibria a light gold color, and the row player’s ell is gold
and wraps from the top of the row player’s quadrant to the bottom of the
bad quadrant. Cells whose games have cerulean equilibria or black equilibria
are colored light cerulean or gray respectively. The column player’s ell is
cerulean and wraps from the right of the column player’s quadrant to the
left of the bad quadrant. The bad ell is gray and lies in three quadrants: the
bad quadrant, the row player’s quadrant, and the column player’s quadrant.
The infamous prisoner’s dilemma is at the crook of this bad ell, in the top
right of the bad quadrant. Mixed equilibria occur exactly in the bottom left
quarter of each quadrant.

7 An Interactive Picture

While Figure 4 is very insightful, it is just a slice of the four-dimensional
space. To explore the whole space, we must allow b1 and b2 to change.
However, when b1 is larger, the triangle becomes smaller, and x1 has less
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Figure 5: A screenshot of the web app. We can change the values of x1, b1,
x2, and b2 as we wish, and the diagram is centered on the point (x1, x2). The
picture becomes squished when b1 and b2 become bigger.
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impact on the game. At the extreme, when b1 = 6, changing x1 has no impact
on the game. The same is true for b2 and x2. To reflect this, when b1 becomes
larger, the four quadrants in Figure 4 should be squished horizontally so that
when b1 = 6, they each have zero width. This clearly indicates how changing
b1 affects the impact x1. When b2 becomes larger, the quadrants should be
squished vertically to reflect the impact of x2.

If our picture is interactive and changing as we manipulate b1 and b2, we
don’t need to show all four parts of Figure 4. Suppose we only show one
of the four. Additionally, suppose that rather than showing 36 diagrams,
we show only one, and we allow ourselves the luxury of manipulating x1

and x2. Now we sit at a point in the four-dimensional space, with the abil-
ity to manipulate any of the four variables. When b1 or b2 becomes zero,
the game becomes identical to the game at another point on another quad-
rant. Thus, it’s only natural when we change b1 or b2 to zero, that we
might jump to another quadrant. This is the application I created using
JavaScript. Figure 5 is a screenshot of that application, which is accessible
at https://elliothanson.com/game-theory.

There are multiple ways to navigate our space using the app. First,
you can use the sliders to manipulate x1, x2, b1, and b2. When moving b1
or b2 onto or off of zero will trigger the program to switch quadrants, the
appropriate arrows turn blue (the ones on the top if b1 is changing and the
ones on the side if b2 is changing). Additionally, when either b1 or b2 is zero,
a button appears, allowing the user to easily cross the blue boundary.

Clicking or dragging your mouse over the figure allows you to manipulate
x1 and x2; clicking (and not dragging) uses less precision, making it easier to
place the diagram directly on a boundary or in the center of a cell.

Finally, the keyboard can be used to change the coordinate values. The
arrow keys can be used to change x1 and x2. The ‘a’ and ‘d’ keys can be
used to change b1 and the ‘w’ and ‘s’ keys change b2. While the ‘Shift’ key is
being held, using the keys to change the game will instead add velocities to
the corresponding parameters, allowing us to move through the space along
a set trajectory. Pressing the space bar sets all velocities to zero. When b1 or
b2 becomes zero as the result of a key press or while the parameters move on
their own, the program immediately switches to the appropriate quadrant.
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8 Conclusion

The space of 2 × 2 games is multifaceted and interconnected in a complex
way. The literature addresses some of this structure; the 144 regions and the
connections between them are precedented: Figure 4 closely resembles figures
made by Robinson and Goforth [1]. However, this space has historically been
thought of as a discrete set of 144 games. By viewing the space of games as
a continuum, we allow for the variation which can occur in each region: the
players’ behavior will be fundamentally the same, but their returns may vary.
Additionally, the system we have established does not exclude degenerate
games. The nuances of this space come largely from the behavior of games on
the boundaries. These games had been largely ignored. This paper provides
a window into the whole space of 2 × 2 so that we may see and understand
it in its entirety.
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